
 

 11

  
Abstract—The paper primarily tries to identify 

the main obstacles for performance and 
complexity improvements in CMPs (speculative 
chip multiprocessors) with TLS (thread level 
speculation). It is focused on an analysis of the 
integrated speculation and coherence protocols in 
the state-of-the-art CMPs and identifies four areas 
where the improvements are promising: hardware 
overhead, software overhead, bursty traffic, and 
replacement policy. After an overview of each 
aspect, some ideas for reducing the identified 
overheads are outlined. Finally, the paper 
concludes with a very brief sketch of an innovative 
proposal which employs the lessons learned the 
previous analysis.  
 

Index Terms—coherence protocols, single chip 
multiprocessors, thread-level speculation 
 

1. INTRODUCTION 
he rapid technology advances in the past 
decade resulted in emerging of single chip 

multiprocessors (CMP). Their wide acceptance 
depends not only on the efficiency for parallel 
applications, but also on their ability to execute 
sequential applications in a cost-effective way. 
For this purpose, CMPs predominantly employ 
the thread-level speculation (TLS) technique [1]. 

The CMP architectures with TLS support can 
be classified into three main groups. The 
approaches from the first group are completely 
oriented towards exploiting speculative 
parallelism, e.g., Multiscalar (ARB and SVC 
schemes) [1,2], Multiplex [3], Trace processor [4], 
SM processor [5], MAJC [6], MP98 [7] and MIT 
MAP [8]. In these proposals application threads 
can communicate both through registers and the 
shared memory. It has been shown that 
hardware and software support for inter-register 
communication in these architectures is quite 
acceptable and effective to provide correct 
speculative execution. In addition, some of these 
systems, such as Multiscalar, Multiplex, Trace 
processor, MIT MAP or SM processor, have 
sufficient hardware support that enables them to 
deliver high performance by handling sequential 
binaries without a need for full recompilation of 
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the source code. However, when these systems 
run a parallel application or a multiprogrammed 
workload, large amount of speculative hardware 
and software support remains unutilized. 

The second group includes mostly generic 
CMP architectures with only minimal support for 
speculative execution, e.g., Hydra [9], 
STAMPede [10], and SP [11]. These systems 
restrict the inter-thread communication to occur 
through memory only. Studies about impact of 
communication latency on overall performance of 
speculative CMPs argued that a fast 
communication scheme between processor 
cores may not be required and that inter-thread 
communication through the memory is fast 
enough to minimize the performance impact from 
communication delays [9,10,11,12]. The limitation 
of inter-thread communication through the 
memory simplifies the design but the need for 
source code recompilation is still a disadvantage. 

IACOMA [12], Atlas [13] and SpecCMP [14] 
architectures are the representatives of the third 
group of CMPs with TLS support. They combine 
the best features of previous two approaches: 

• inter-thread communication both through 
registers and memory, and operation on 
sequential binaries without need for source 
recompilation as in the first group, 

• modest hardware support for speculative 
execution and generic enough CMP 
architecture as in the second group. 

 
The third group of CMPs with TLS support has 

simpler design and modest hardware/software 
support for speculative execution compared to 
CMPs from the first group. 

In speculative CMPs, correct speculation 
handling is usually integrated into protocols for 
coherence maintenance [15]. Several kinds of 
overheads or can be noticed in these protocols 
such as: 

• Hardware overhead, 
• Software overhead, 
• Bursty traffic on thread commit, 
• Inappropriate replacement policy. 
 

Our intention is to propose a speculative CMP 
architecture similar to the systems from the third 
group since they have a modest hardware and 
software support for the speculative execution 
and, also, with a support for the inter-thread 
communication both through registers and 
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memory. The goal is to alleviate some of these 
overheads and to improve over existing solutions 
of the same kind. For that reason, in the following 
sections a brief analysis of overheads observed 
in Hydra [9], STAMPede [10], SP [11], IACOMA 
[12], Atlas [13] and SpecCMP [14] is presented. 
In addition, SVC scheme of Multiscalar employs 
an important speculative and, therefore, it is also 
included in this analysis [2]. 

2. HARDWARE OVERHEADS 

IACOMA, STAMPede, SpecCMP, Multiscalar 
(SVC scheme) and Hydra assign a number of 
state bits to L1 data cache lines/words as a part 
of the hardware support for speculative 
execution. In IACOMA and STAMPede each 
private L1-cache word and line, respectively, are 
augmented with additional 6 bits, while SpecCMP 
has even 8 additional bits assigned to each L1-
cache word. Tags of each data cache 32-byte 
line in Hydra also include additional bits to record 
the state necessary for speculation. The first two 
bits, Modified and Pre-Invalidate, augment the 
basic cache coherence scheme, while the other 
two sets of bits, Read-by-Word and Written-by-
Word, allow the detection of RAW violation using 
the write bus mechanism. SVC scheme incurs 6-
bit overhead plus a pointer for each L1-cache 
line. The pointer identifies the processor that has 
the next copy/version, if any, in the Version 
Ordering List (VOL) for a particular line [2]. 

SP uses the memory buffer in the run-time 
dependence checking. Namely, all of the target 
store entries, from current and the predecessor 
threads, are stored in the memory buffer. The 
memory buffer is used as a write-back buffer for 
the non-target store data. Each entry in the 
memory buffer includes the address tag and the 
data field as well as additional bits and bit fields 
such as: valid bit, alias count, target store 
distance vector (N bits) for address and target 
store distance vector (N bits) for data (N is the 
number of thread processing units) [11]. 

Also, all speculative CMP architectures exploit 
different hardware mechanisms for resolving 
memory data dependences and buffering of 
speculative states. This support adds on already 
present hardware overheads.  

The disambiguating mechanism in IACOMA is 
implemented through the memory 
disambiguation table (MDT) and a related logic 
that checks for data dependence violations. The 
MDT is analogous to a directory in a shared-
memory multiprocessor. It is a centralized 
approach that keeps its entries on cache line 
basis, while the information is maintained on per-
word basis. It augments overall bit overhead 
since each word in MDT has Load and Store bit 
for each processor. Also, it is possible that the 
MDT runs out of entries causing a stall of 
speculative thread while trying to insert a new 
entry in MDT. By using the values from MDT, the 

additional Check-on-store logic determines 
whether any successor thread has performed an 
unsafe load causing memory dependence 
violation [12]. 

The hardware overhead in SpecCMP is 
caused by complexity of control logic required for 
operations of the cache controller: ownership 
probing and data transfer for data forwarding 
between processor cores, violation detection and 
state transition. Since the management of 
speculative state is performed on per-word basis, 
the increase in area overhead of applied cache 
directory is significant in comparison to original 
MSI cache directory. The estimation of the delay 
of logic on critical paths and additional area 
overhead caused by added state bits in L1 
caches has shown that area overhead occupies 
more than half of the total delay for many 
protocol operations. However, the delay caused 
by accessing and comparing cache tags is higher 
than the area overhead. The critical path latency 
is increased by 11% when protocol operations 
are performed in parallel with tag comparison 
[14]. 

The Hydra employs a set of write buffers, 
rather than the L1-caches, to hold the speculative 
writes until they can be safely committed into the 
L2 cache. Hence, the shared L2 cache is 
guaranteed to hold the non-speculative data only. 
One write buffer is assigned to each speculative 
thread. In case when a write buffer has to be 
drained to L2 cache, the processor core sends 
the message to the buffer controller to initiate the 
procedure. There are more sets of buffers than 
processor cores in Hydra in order to allow 
continuity of speculative execution when those 
buffers drain their contents into the shared L2 
cache. Although inclusion of write buffers 
simplifies the protocol, they may become full and 
stall the speculative threads. Also, a coprocessor 
is assigned to each processor core to control the 
thread sequencing The coprocessor has several 
hardware mechanisms to support speculation 
and to simplify cache coherence scheme, but it 
incurs the additional area overhead. It has 
several control registers, a set of duplicate L2-
cache buffer tags, a state machine that tracks the 
current thread sequence and the interrupt logic to 
initiate software handlers [9]. 

The centralized logic called the Version Control 
Logic (VCL) is applied in SVC scheme as a 
hardware support for speculation. Each cache 
line includes a pointer that identifies the 
processor core that has the next version in the 
Version Ordering List (VOL) for that line. The 
VCL uses the bus request, the program order 
among the tasks and the VOL for appropriate 
response for each L1 cache when cache misses 
issue a bus request. Hence, each cache line is 
updated based on its initial state, the bus request 
and the VCL response.  

The Atlas is a CMP that engages aggressive 
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speculation techniques to enable the dynamic 
parallelization of sequential binaries. Thread 
speculation and data value/control prediction are 
combined to enable a processor to execute 
dependent threads in parallel. This architecture is 
critically dependent on performance of applied 
sophisticated data value/control predictor. It is 
implemented together with the global predictor 
with hardware structures added to each 
processor core or with modification of already 
existed hardware support inside each processor 
core. The inclusion of this mechanism resulted in 
an area as well as a run-time overhead [13]. 

3. SOFTWARE OVERHEADS 

Hydra uses a coprocessor as a 
hardware/software interface to control the thread 
sequencing in the system. These simple 
“speculation coprocessors” consist of several 
control registers, a set of duplicate secondary 
cache buffer tags, a state machine to track the 
current thread sequencing, and an interrupt logic 
that can start software handlers to control thread 
sequencing if necessary. Also, Hydra requires 
source recompilation, which is a serious problem 
when source code is not available. The register-
level coherence is also handled by a software 
support, which incurs additional time penalty [9]. 

Both STAMPede and SP require source 
recompilation to extract thread-level parallelism. 
STAMPede uses software speculation handlers 
and sophisticated compiler technology to support 
speculative execution [10]. SP architecture 
heavily relies on compiler to identify speculative 
threads and to generate an efficient threaded 
code. It successfully applies both classical and 
innovative complier techniques for program 
analysis and transformation in order to exploit 
more parallelism in programs [11]. 

4. BURSTY TRAFFIC ON THREAD COMMIT 

IACOMA L1 caches work in a restricted write-
back mode during the speculative execution and 
they are not allowed to displace modified lines. 
However, when a speculative thread acquires 
non-speculative status, modified lines can be 
displaced from L1 caches and they switch to 
write-through mode. When a thread completes 
and before it commits, any remaining modified 
cache line is flushed to memory causing the 
bursty traffic on interconnect. This may increase 
the time to commit the thread [12]. The same 
situation appears also in SpecCMP [14]. 

The STAMPede also performs writes of non-
speculative contents on thread completion [10], 
which results in same problems as in SpecCMP 
and IACOMA. SP’s thread pipelining execution 
model drains data from memory buffer to the L2 
cache during the write-back stage causing bursty 
traffic [11]. The same action is performed in Atlas 
on non-speculative thread completion. The write 

buffer associated to each CPU has to be flushed 
to the shared L2 cache by broadcasting the data 
values out to L2 cache and all speculative nodes 
causing the bursty traffic on an interconnect as 
well as an increase of thread commit time [12]. 

5. REPLACEMENT POLICY 

The IACOMA speculative protocol allows only 
non-speculative thread to displace an updated 
cache word from L1 cache, while any other 
speculative thread stalls on that occasion. To 
keep system simple, IACOMA did not include 
hardware support that allows the committed lines 
to remain in L1 cache after a new speculative 
thread starts on a processor [12]. 

The SpecCMP temporarily holds the 
speculative data in L1 cache of a speculative 
thread. When a speculative thread acquires non-
speculative status it is allowed to store data to 
the shared L2 cache and to replace the cache 
word found either in shared or modified state 
[14]. 

A cache line cannot be evicted from the 
Speculative Data Cache of a processor core in 
Atlas while that processor runs a speculative 
thread. In case when a cache line has to be 
replaced and only if cache lines with active 
speculation bits are available for replacement, 
the corresponding speculative thread must stall 
until it becomes non-speculative. The active 
speculation bits added to each cache line enable 
the detection of data dependency violation. If the 
speculative cache lines are evicted, the 
processor would not be able to track data 
dependences anymore and the speculative 
execution fails [13]. 

If a speculative thread tries to evict a cache 
line with the read bits set, the corresponding 
processor core in Hydra is stalled until the thread 
becomes either the head thread or is restarted. 
However, a small victim buffer is added to data 
cache in each processor core to prevent its 
stalling until the victim cache is full. The write 
buffers are added between each processor core 
and shared L2 cache to collect all writes made by 
processors during speculative execution. The 
buffer is drained to the shared L2 cache only 
when a speculative thread acquires the non-
speculative status. They may fill up during 
speculative execution, so the corresponding 
threads will be stalled (unless they are restarted) 
until they become the non-speculative [9]. 

The STAMPede generates a flush each time a 
speculative write accesses a dirty cache line. 
This action is performed in order to ensure that 
only up-to-date copy of the given cache line is not 
corrupted with the speculative write. When an 
epoch tries to replace a speculative cache line 
from the L1 cache during speculative execution, 
it is treated as a dependence violation. Two 
schemes are possible: first, that allows the epoch 
to proceed and to signal the violation, and 
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second, that suspends the epoch until it becomes 
non-speculative and, then, allows the 
replacement of given cache line [10]. 

SP uses memory buffers to save store 
addresses and data for run-time data 
dependence checking, as well as to save 
uncommitted produced data. The memory buffer 
has a fixed size and when it overflows the 
corresponding speculative thread must be stalled 
until all of its predecessors are completed. When 
it becomes the head thread, it obtains non-
speculative status and it is allowed to resume the 
execution. Then, the data from the memory buffer 
can be saved into the next memory level [11]. 

6. IMPROVEMENT AVENUES 

Based on lessons learned from previous brief 
analysis, some avenues for an improvement in 
each of four areas can be summarized: 

1. Hardware overhead can be reduced by 
using L1 data caches to buffer speculative data 
until they are safe to be saved in the shared L2 
cache, and by decreasing the number of 
additional bits for each cache word in L1 data 
caches as a support for resolving inter-thread 
data dependence violations. Also, it would 
implement simpler hardware mechanisms for 
thread control and sequencing in each processor 
core.  

2. Software overhead can be reduced if the 
source recompilation is avoided during 
partitioning the sequential programs into threads. 
Avoiding speculation handlers also leads to 
reducing the software overhead. 

3. The bursty traffic during thread commit 
incurred in most of speculative CMPs causes a 
delay in issuing a new thread to the core which 
executed the committed thread. Thread commits 
can be made more efficient by retaining the 
modified data in L1 caches until their 
replacement or intended modification. That way, 
the delay in issuing a new thread caused by 
bursty traffic on thread commits can be 
neglected.  

4. Replacement policies applied in current 
CMP architectures are based on classical 
temporal history of either cache lines or words 
that are candidates for replacement and they do 
not care about their current 
coherence/speculation states. A new 
replacement policy should first consider the 
cache word memory state instead of temporal 
history of use. However, among the cache words 
that are in the same memory state the 
replacement policy can follow classical FIFO, 
LRU or random policy as a secondary criterion. 

7. BRIEF SKETCH OF THE PROPOSAL 

With the experience gained from the previous 
analysis a proposal is made which attempts to 
achieve a cost-effective solution by removing or 

reducing the overheads observed in HW/SW 
support for speculation in current CMP 
architectures along the recognized improvement 
avenues. This section very briefly describes the 
basic elements of the proposal. 

1. CMP architecture 
Underlying speculative CMP architecture is 

similar to IACOMA [13], Atlas [14] and SpecCMP 
[15] and consists of four processor cores, each 
with private L1 data and instruction caches 
connected by a snoopy shared bus, while all 
cores share the unified L2 on-chip cache (Fig. 1). 
This architecture supports the inter-processor 
communication both through registers and 
memory. The hardware support for register 
communication includes a snoopy shared bus for 
transferring register values between cores and 
local scoreboards for keeping the status of data 
in registers. A hardware mechanism to support 
thread-level memory speculation is integrated 
into each processing unit’s cache controller. 

2. Speculation support 
The speculative threads are limited to inner-

most loop iterations. The status of non-
speculative thread moves from one thread to its 
immediate successor and so on after a thread 
completes. It is presumed that threads strictly 
commit in order to keep the sequential 
semantics. The thread has to wait to reach the 
non-speculative status before it can be retired 
and a new thread to be initiated on the same 
processor. 

The sequential application starts execution on 
one core, and then, when it reaches a loop entry 
point the multiple threads are spawned on other 
cores. Hence, there is always one non-
speculative thread, while all its successors are 
speculative threads. After the last iteration is 
completed, any iteration that was speculatively 
spawned after the last one is squashed. 

The speculative state is kept in private L1 
caches while the shared L2 cache keeps the 
sequential state (Fig. 1). Speculative data can be 
committed to the shared L2 cache only after 
thread becomes a non-speculative. Speculative 
threads get the required data from appropriate 
producer thread. In addition, when a successor 
speculative thread reads a cache word before a 
predecessor thread writes to the same cache 
word, the data dependence violation (RAW 
hazard) is detected. Then, the thread that caused 
the violation as well as all its successors, that 
might use data produced by violating thread, has 
to be squashed and restarted. 

3. Thread identification and manipulation 
The thread identification in a sequential 

application is achieved in software during a 
compilation For this purpose the modified binary 
annotator based on IACOMA annotation tool is 
used [16, 17]. The modifications of the IACOMA 
binary annotator are related to the classification 
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of writes to the loop-live registers. Those writes 
can be divided into non-final writes (NFW), final 
writes (FW) [16], and possibly final writes (PFW) 
(in enhanced version) [17]. NFW is one that is 
definitely followed by at least one write to the 
same register, while FW is definitely the last one. 
The PFW is one that might be either final or non-
final depending on the control flow of the current 
iteration. The annotator extracts multiple threads 
from sequential binaries without the need to 
recompile the source code.  

4. Register-level protocols 
Two versions of register-level protocol are 

proposed Snoopy Inter-Register Communication 
(SIC) protocol [16], and its extended version SIC 
(ESIC) [17]. The register communication between 
threads in both of them can be producer-initiated 
and consumer-initiated. 

 

Processor 1 Processor 2 Processor 3 Processor 4

Snoopy Shared Bus 

Snoopy Shared Bus 

Registers Registers Registers Registers

FU FU FU FU

Bus interface
logic

Bus interface
logic

Bus interface
logic

Bus interface
logic

Directory Directory Directory Directory

I-cache D-cache

Controller and
Speculation support

I-cache D-cache

Controller and
Speculation support

I-cache D-cache

Controller and
Speculation support

I-cache D-cache

Controller and
Speculation support

Unified L2 cache

L1 level

L2 level
 

Fig. 1. CMP architecture 

A loop-live register value in the SIC protocol 
can be found in one of the following states: 
Invalid (INV), Valid-Unsafe (VU), Valid-Safe (VS), 
and Last Copy (LC). Other registers can be either 
in Invalid (INV) or Valid-Safe (VS) states. A read 
miss for a loop-live register causes a consumer-
initiated inter-thread communication. All possible 
suppliers, i.e., predecessors (non-speculative 
thread or/and earlier speculative threads) 
participate in distributed bus arbitration which 
chooses the latest predecessor. If there is no 
supplier available at the moment, the consumer 
thread blocks. FW request to a loop-live register 
incurs the producer-initiated communication by 
sending the value to the immediate successor 
thread. If the successor was blocked waiting for 
this particular value, it continues the execution.  

In handling of read misses to a non-looplive 
registers Read Snarfing is employed in order to 
decrease a number of misses and to validate the 
other registers more quickly. Last copy problem 
is managed by means of a separate state.  

However, the SIC baseline scheme does not 
resolve the problem of consumer thread blocking 
when requested register value has not been 
produced yet. Another proposal, the enhanced 

SIC protocol (ESIC), aims to obtain further 
performance gain preventing a consumer thread 
blocking in SIC scheme by aggressively and 
speculatively forwarding of possibly final register 
values. Although the ESIC protocol introduces 
two additional states, Valid-Possibly-Safe (VPS) 
and Valid-Possibly-Safe-Forwarded (VPSF), 
hardware and software support for this proposal 
are very slightly more demanding.  

5. Memory-level protocols 
The memory communication, buffering of 

speculative data and data dependence detection 
in this architecture is performed through L1 write-
back data caches with added support for 
speculative execution. Compared to register 
dependences it is very difficult to identify memory 
dependences from the binaries. Therefore, we 
decided to include a hardware support that is 
fully responsible for identification and managing 
of memory dependencies as well as for 
recovering the execution. The proposal for 
speculative execution respects the strict 
sequential semantics both in thread retiring, and 
a new thread initiation.  

This proposal for cache coherence protocol 
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with TLS support relies on snoopy cache 
coherence principles [15]. The baseline scheme 
modifies the snooping bus-based cache 
coherence protocol to support speculative 
versioning for proposed CMP architecture.  

The proposed integrated coherence and 
speculation protocol is called Speculation 
Integrated with Snoopy Coherence (SISC) 
protocol. The memory state is managed on a per-
word basis since previous work has shown that 
memory state management on a per-line basis 
could result in false dependence detection that 
causes the unnecessary threads squash and 
worse performance [2, 13, 15]. 

Three variants of speculative cache coherence 
protocol are proposed: first, a write-invalidate 
SISC protocol as the baseline scheme, second, 
an enhanced SISC variant, and, third, a write-
update based SISC protocol. 

The baseline scheme of SISC write-invalidate 
protocol uses 11 states to keep track of data 
status. It enables consumer-initiated inter-thread 
communication only. The correct value is 
supplied by most recent speculative thread, non-
speculative thread or shared L2 cache.  

The committed versions in baseline SISC 
protocol can remain in the caches after the 
thread that created the data has been committed. 
This way, the possible bursty bus traffic that may 
increase the time to commit the thread and delay 
initialization of a new thread to that processor is 
avoided. A modified committed cache word is 
written back to L2 cache when it is accessed next 
time either on local thread read/write request or 
on remote request(s) from other thread(s). The 
cache words found in stale, shared or modified 
committed state remains in the same state when 
a speculative thread reaches non-speculative 
status. Then, the thread can be retired and a new 
thread initiated on the same core.  

Following the analogy with register-level 
protocols, since the baseline SISC protocol does 
not support producer initiated communication on 
memory level, it is extended with new state 
Shared-Unsafe (SU) in order to support non-
demand inter-thread communication on write hits 
and misses. If a cache word is either in shared or 
stale state on a non-speculative write, or in any 
shared or speculatively modified state on a 
speculative write, it is forwarded to successor 
threads on non-demand basis. 

Third version of the cache coherence protocol 
with TLS support in proposed CMP architecture 
is based on write-update protocol. It uses 9 
states and an additional stale bit for each cache 
word in L1 cache. The inter-thread memory 
communication in this version can be both 
producer-initiated and consumer-initiated. In 
SISC write-update protocol whenever a shared 
cache word is written to the corresponding L1 
cache, its value is updated in the L1 caches of all 
successor threads that also have a given cache 

word in shared state.  
In all three variants of SISC protocol, an 

improved replacement policy is employed. It 
considers the cache word memory state as 
primary criterion for eviction instead of usual 
temporal history of reference. The first 
candidates for replacement are the words in non-
speculative states, because the replacement of a 
speculative word would causes a speculative 
thread squash and restart. It allows a speculative 
thread to evict from its L1 cache the modified 
committed cache words that are only up-to-date 
copies and that have been speculatively read or 
written. Also, clean words that have not been yet 
speculatively either read or write can be 
replaced. Hence, the processor stall will be 
avoided and the speculative execution will 
continue. However, among the clean cache 
words that are in the same state standard FIFO, 
LRU or random policy can be considered as the 
secondary criterion. 

8. CONCLUSION 

Current CMPs with TLS support have been 
analyzed for possible improvements. It resulted 
in identification of overheads in four areas: 
hardware complexity, software support, bursty 
traffic on thread commit and replacement policy. 
Based on the results of the previous analysis, a 
proposal of CMP architecture with protocols for 
register-level and memory-level communication 
is made which tries to reduce those overheads. 

This proposal decreases the directory 
overhead by using fewer bits both in register and 
memory protocols. Also, SISC protocols use the 
distributed arbitration for finding the appropriate 
supplier thread with modest hardware support. 
The software support doesn’t include speculation 
handlers nor requires source recompilation. SISC 
protocols retain the non-speculative data in L1 
caches on thread commits over time until their 
replacement in order to minimize the delay in 
issuing new threads. They also implement an 
improved replacement policy that reduces thread 
squashing and stalling. Future evaluation study 
should reveal the quantitative performance 
effects of proposed optimizations. 
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