

 11

Abstract—The paper primarily tries to identify

the main obstacles for performance and
complexity improvements in CMPs (speculative
chip multiprocessors) with TLS (thread level
speculation). It is focused on an analysis of the
integrated speculation and coherence protocols in
the state-of-the-art CMPs and identifies four areas
where the improvements are promising: hardware
overhead, software overhead, bursty traffic, and
replacement policy. After an overview of each
aspect, some ideas for reducing the identified
overheads are outlined. Finally, the paper
concludes with a very brief sketch of an innovative
proposal which employs the lessons learned the
previous analysis.

Index Terms—coherence protocols, single chip
multiprocessors, thread-level speculation

1. INTRODUCTION
he rapid technology advances in the past
decade resulted in emerging of single chip

multiprocessors (CMP). Their wide acceptance
depends not only on the efficiency for parallel
applications, but also on their ability to execute
sequential applications in a cost-effective way.
For this purpose, CMPs predominantly employ
the thread-level speculation (TLS) technique [1].

The CMP architectures with TLS support can
be classified into three main groups. The
approaches from the first group are completely
oriented towards exploiting speculative
parallelism, e.g., Multiscalar (ARB and SVC
schemes) [1,2], Multiplex [3], Trace processor [4],
SM processor [5], MAJC [6], MP98 [7] and MIT
MAP [8]. In these proposals application threads
can communicate both through registers and the
shared memory. It has been shown that
hardware and software support for inter-register
communication in these architectures is quite
acceptable and effective to provide correct
speculative execution. In addition, some of these
systems, such as Multiscalar, Multiplex, Trace
processor, MIT MAP or SM processor, have
sufficient hardware support that enables them to
deliver high performance by handling sequential
binaries without a need for full recompilation of

Manuscript received December 12, 2006.
Milan Radulović is with T-mobile, Podgorica, Montenegro (e-

mail: radulovic_milan@yahoo.com). (contact person)
Milo Tomašević is with School of Electrical Engineering,

University of Belgrade, Serbia (e-mail: mvt@etf.bg.ac.yu).

the source code. However, when these systems
run a parallel application or a multiprogrammed
workload, large amount of speculative hardware
and software support remains unutilized.

The second group includes mostly generic
CMP architectures with only minimal support for
speculative execution, e.g., Hydra [9],
STAMPede [10], and SP [11]. These systems
restrict the inter-thread communication to occur
through memory only. Studies about impact of
communication latency on overall performance of
speculative CMPs argued that a fast
communication scheme between processor
cores may not be required and that inter-thread
communication through the memory is fast
enough to minimize the performance impact from
communication delays [9,10,11,12]. The limitation
of inter-thread communication through the
memory simplifies the design but the need for
source code recompilation is still a disadvantage.

IACOMA [12], Atlas [13] and SpecCMP [14]
architectures are the representatives of the third
group of CMPs with TLS support. They combine
the best features of previous two approaches:

• inter-thread communication both through
registers and memory, and operation on
sequential binaries without need for source
recompilation as in the first group,

• modest hardware support for speculative
execution and generic enough CMP
architecture as in the second group.

The third group of CMPs with TLS support has

simpler design and modest hardware/software
support for speculative execution compared to
CMPs from the first group.

In speculative CMPs, correct speculation
handling is usually integrated into protocols for
coherence maintenance [15]. Several kinds of
overheads or can be noticed in these protocols
such as:

• Hardware overhead,
• Software overhead,
• Bursty traffic on thread commit,
• Inappropriate replacement policy.

Our intention is to propose a speculative CMP
architecture similar to the systems from the third
group since they have a modest hardware and
software support for the speculative execution
and, also, with a support for the inter-thread
communication both through registers and

On Reducing Overheads
 in CMP TLS Integrated Protocols

Radulović, B., Milan; Tomašević, V., Milo

T

 12

memory. The goal is to alleviate some of these
overheads and to improve over existing solutions
of the same kind. For that reason, in the following
sections a brief analysis of overheads observed
in Hydra [9], STAMPede [10], SP [11], IACOMA
[12], Atlas [13] and SpecCMP [14] is presented.
In addition, SVC scheme of Multiscalar employs
an important speculative and, therefore, it is also
included in this analysis [2].

2. HARDWARE OVERHEADS

IACOMA, STAMPede, SpecCMP, Multiscalar
(SVC scheme) and Hydra assign a number of
state bits to L1 data cache lines/words as a part
of the hardware support for speculative
execution. In IACOMA and STAMPede each
private L1-cache word and line, respectively, are
augmented with additional 6 bits, while SpecCMP
has even 8 additional bits assigned to each L1-
cache word. Tags of each data cache 32-byte
line in Hydra also include additional bits to record
the state necessary for speculation. The first two
bits, Modified and Pre-Invalidate, augment the
basic cache coherence scheme, while the other
two sets of bits, Read-by-Word and Written-by-
Word, allow the detection of RAW violation using
the write bus mechanism. SVC scheme incurs 6-
bit overhead plus a pointer for each L1-cache
line. The pointer identifies the processor that has
the next copy/version, if any, in the Version
Ordering List (VOL) for a particular line [2].

SP uses the memory buffer in the run-time
dependence checking. Namely, all of the target
store entries, from current and the predecessor
threads, are stored in the memory buffer. The
memory buffer is used as a write-back buffer for
the non-target store data. Each entry in the
memory buffer includes the address tag and the
data field as well as additional bits and bit fields
such as: valid bit, alias count, target store
distance vector (N bits) for address and target
store distance vector (N bits) for data (N is the
number of thread processing units) [11].

Also, all speculative CMP architectures exploit
different hardware mechanisms for resolving
memory data dependences and buffering of
speculative states. This support adds on already
present hardware overheads.

The disambiguating mechanism in IACOMA is
implemented through the memory
disambiguation table (MDT) and a related logic
that checks for data dependence violations. The
MDT is analogous to a directory in a shared-
memory multiprocessor. It is a centralized
approach that keeps its entries on cache line
basis, while the information is maintained on per-
word basis. It augments overall bit overhead
since each word in MDT has Load and Store bit
for each processor. Also, it is possible that the
MDT runs out of entries causing a stall of
speculative thread while trying to insert a new
entry in MDT. By using the values from MDT, the

additional Check-on-store logic determines
whether any successor thread has performed an
unsafe load causing memory dependence
violation [12].

The hardware overhead in SpecCMP is
caused by complexity of control logic required for
operations of the cache controller: ownership
probing and data transfer for data forwarding
between processor cores, violation detection and
state transition. Since the management of
speculative state is performed on per-word basis,
the increase in area overhead of applied cache
directory is significant in comparison to original
MSI cache directory. The estimation of the delay
of logic on critical paths and additional area
overhead caused by added state bits in L1
caches has shown that area overhead occupies
more than half of the total delay for many
protocol operations. However, the delay caused
by accessing and comparing cache tags is higher
than the area overhead. The critical path latency
is increased by 11% when protocol operations
are performed in parallel with tag comparison
[14].

The Hydra employs a set of write buffers,
rather than the L1-caches, to hold the speculative
writes until they can be safely committed into the
L2 cache. Hence, the shared L2 cache is
guaranteed to hold the non-speculative data only.
One write buffer is assigned to each speculative
thread. In case when a write buffer has to be
drained to L2 cache, the processor core sends
the message to the buffer controller to initiate the
procedure. There are more sets of buffers than
processor cores in Hydra in order to allow
continuity of speculative execution when those
buffers drain their contents into the shared L2
cache. Although inclusion of write buffers
simplifies the protocol, they may become full and
stall the speculative threads. Also, a coprocessor
is assigned to each processor core to control the
thread sequencing The coprocessor has several
hardware mechanisms to support speculation
and to simplify cache coherence scheme, but it
incurs the additional area overhead. It has
several control registers, a set of duplicate L2-
cache buffer tags, a state machine that tracks the
current thread sequence and the interrupt logic to
initiate software handlers [9].

The centralized logic called the Version Control
Logic (VCL) is applied in SVC scheme as a
hardware support for speculation. Each cache
line includes a pointer that identifies the
processor core that has the next version in the
Version Ordering List (VOL) for that line. The
VCL uses the bus request, the program order
among the tasks and the VOL for appropriate
response for each L1 cache when cache misses
issue a bus request. Hence, each cache line is
updated based on its initial state, the bus request
and the VCL response.

The Atlas is a CMP that engages aggressive

 13

speculation techniques to enable the dynamic
parallelization of sequential binaries. Thread
speculation and data value/control prediction are
combined to enable a processor to execute
dependent threads in parallel. This architecture is
critically dependent on performance of applied
sophisticated data value/control predictor. It is
implemented together with the global predictor
with hardware structures added to each
processor core or with modification of already
existed hardware support inside each processor
core. The inclusion of this mechanism resulted in
an area as well as a run-time overhead [13].

3. SOFTWARE OVERHEADS

Hydra uses a coprocessor as a
hardware/software interface to control the thread
sequencing in the system. These simple
“speculation coprocessors” consist of several
control registers, a set of duplicate secondary
cache buffer tags, a state machine to track the
current thread sequencing, and an interrupt logic
that can start software handlers to control thread
sequencing if necessary. Also, Hydra requires
source recompilation, which is a serious problem
when source code is not available. The register-
level coherence is also handled by a software
support, which incurs additional time penalty [9].

Both STAMPede and SP require source
recompilation to extract thread-level parallelism.
STAMPede uses software speculation handlers
and sophisticated compiler technology to support
speculative execution [10]. SP architecture
heavily relies on compiler to identify speculative
threads and to generate an efficient threaded
code. It successfully applies both classical and
innovative complier techniques for program
analysis and transformation in order to exploit
more parallelism in programs [11].

4. BURSTY TRAFFIC ON THREAD COMMIT

IACOMA L1 caches work in a restricted write-
back mode during the speculative execution and
they are not allowed to displace modified lines.
However, when a speculative thread acquires
non-speculative status, modified lines can be
displaced from L1 caches and they switch to
write-through mode. When a thread completes
and before it commits, any remaining modified
cache line is flushed to memory causing the
bursty traffic on interconnect. This may increase
the time to commit the thread [12]. The same
situation appears also in SpecCMP [14].

The STAMPede also performs writes of non-
speculative contents on thread completion [10],
which results in same problems as in SpecCMP
and IACOMA. SP’s thread pipelining execution
model drains data from memory buffer to the L2
cache during the write-back stage causing bursty
traffic [11]. The same action is performed in Atlas
on non-speculative thread completion. The write

buffer associated to each CPU has to be flushed
to the shared L2 cache by broadcasting the data
values out to L2 cache and all speculative nodes
causing the bursty traffic on an interconnect as
well as an increase of thread commit time [12].

5. REPLACEMENT POLICY

The IACOMA speculative protocol allows only
non-speculative thread to displace an updated
cache word from L1 cache, while any other
speculative thread stalls on that occasion. To
keep system simple, IACOMA did not include
hardware support that allows the committed lines
to remain in L1 cache after a new speculative
thread starts on a processor [12].

The SpecCMP temporarily holds the
speculative data in L1 cache of a speculative
thread. When a speculative thread acquires non-
speculative status it is allowed to store data to
the shared L2 cache and to replace the cache
word found either in shared or modified state
[14].

A cache line cannot be evicted from the
Speculative Data Cache of a processor core in
Atlas while that processor runs a speculative
thread. In case when a cache line has to be
replaced and only if cache lines with active
speculation bits are available for replacement,
the corresponding speculative thread must stall
until it becomes non-speculative. The active
speculation bits added to each cache line enable
the detection of data dependency violation. If the
speculative cache lines are evicted, the
processor would not be able to track data
dependences anymore and the speculative
execution fails [13].

If a speculative thread tries to evict a cache
line with the read bits set, the corresponding
processor core in Hydra is stalled until the thread
becomes either the head thread or is restarted.
However, a small victim buffer is added to data
cache in each processor core to prevent its
stalling until the victim cache is full. The write
buffers are added between each processor core
and shared L2 cache to collect all writes made by
processors during speculative execution. The
buffer is drained to the shared L2 cache only
when a speculative thread acquires the non-
speculative status. They may fill up during
speculative execution, so the corresponding
threads will be stalled (unless they are restarted)
until they become the non-speculative [9].

The STAMPede generates a flush each time a
speculative write accesses a dirty cache line.
This action is performed in order to ensure that
only up-to-date copy of the given cache line is not
corrupted with the speculative write. When an
epoch tries to replace a speculative cache line
from the L1 cache during speculative execution,
it is treated as a dependence violation. Two
schemes are possible: first, that allows the epoch
to proceed and to signal the violation, and

 14

second, that suspends the epoch until it becomes
non-speculative and, then, allows the
replacement of given cache line [10].

SP uses memory buffers to save store
addresses and data for run-time data
dependence checking, as well as to save
uncommitted produced data. The memory buffer
has a fixed size and when it overflows the
corresponding speculative thread must be stalled
until all of its predecessors are completed. When
it becomes the head thread, it obtains non-
speculative status and it is allowed to resume the
execution. Then, the data from the memory buffer
can be saved into the next memory level [11].

6. IMPROVEMENT AVENUES

Based on lessons learned from previous brief
analysis, some avenues for an improvement in
each of four areas can be summarized:

1. Hardware overhead can be reduced by
using L1 data caches to buffer speculative data
until they are safe to be saved in the shared L2
cache, and by decreasing the number of
additional bits for each cache word in L1 data
caches as a support for resolving inter-thread
data dependence violations. Also, it would
implement simpler hardware mechanisms for
thread control and sequencing in each processor
core.

2. Software overhead can be reduced if the
source recompilation is avoided during
partitioning the sequential programs into threads.
Avoiding speculation handlers also leads to
reducing the software overhead.

3. The bursty traffic during thread commit
incurred in most of speculative CMPs causes a
delay in issuing a new thread to the core which
executed the committed thread. Thread commits
can be made more efficient by retaining the
modified data in L1 caches until their
replacement or intended modification. That way,
the delay in issuing a new thread caused by
bursty traffic on thread commits can be
neglected.

4. Replacement policies applied in current
CMP architectures are based on classical
temporal history of either cache lines or words
that are candidates for replacement and they do
not care about their current
coherence/speculation states. A new
replacement policy should first consider the
cache word memory state instead of temporal
history of use. However, among the cache words
that are in the same memory state the
replacement policy can follow classical FIFO,
LRU or random policy as a secondary criterion.

7. BRIEF SKETCH OF THE PROPOSAL

With the experience gained from the previous
analysis a proposal is made which attempts to
achieve a cost-effective solution by removing or

reducing the overheads observed in HW/SW
support for speculation in current CMP
architectures along the recognized improvement
avenues. This section very briefly describes the
basic elements of the proposal.

1. CMP architecture
Underlying speculative CMP architecture is

similar to IACOMA [13], Atlas [14] and SpecCMP
[15] and consists of four processor cores, each
with private L1 data and instruction caches
connected by a snoopy shared bus, while all
cores share the unified L2 on-chip cache (Fig. 1).
This architecture supports the inter-processor
communication both through registers and
memory. The hardware support for register
communication includes a snoopy shared bus for
transferring register values between cores and
local scoreboards for keeping the status of data
in registers. A hardware mechanism to support
thread-level memory speculation is integrated
into each processing unit’s cache controller.

2. Speculation support
The speculative threads are limited to inner-

most loop iterations. The status of non-
speculative thread moves from one thread to its
immediate successor and so on after a thread
completes. It is presumed that threads strictly
commit in order to keep the sequential
semantics. The thread has to wait to reach the
non-speculative status before it can be retired
and a new thread to be initiated on the same
processor.

The sequential application starts execution on
one core, and then, when it reaches a loop entry
point the multiple threads are spawned on other
cores. Hence, there is always one non-
speculative thread, while all its successors are
speculative threads. After the last iteration is
completed, any iteration that was speculatively
spawned after the last one is squashed.

The speculative state is kept in private L1
caches while the shared L2 cache keeps the
sequential state (Fig. 1). Speculative data can be
committed to the shared L2 cache only after
thread becomes a non-speculative. Speculative
threads get the required data from appropriate
producer thread. In addition, when a successor
speculative thread reads a cache word before a
predecessor thread writes to the same cache
word, the data dependence violation (RAW
hazard) is detected. Then, the thread that caused
the violation as well as all its successors, that
might use data produced by violating thread, has
to be squashed and restarted.

3. Thread identification and manipulation
The thread identification in a sequential

application is achieved in software during a
compilation For this purpose the modified binary
annotator based on IACOMA annotation tool is
used [16, 17]. The modifications of the IACOMA
binary annotator are related to the classification

 15

of writes to the loop-live registers. Those writes
can be divided into non-final writes (NFW), final
writes (FW) [16], and possibly final writes (PFW)
(in enhanced version) [17]. NFW is one that is
definitely followed by at least one write to the
same register, while FW is definitely the last one.
The PFW is one that might be either final or non-
final depending on the control flow of the current
iteration. The annotator extracts multiple threads
from sequential binaries without the need to
recompile the source code.

4. Register-level protocols
Two versions of register-level protocol are

proposed Snoopy Inter-Register Communication
(SIC) protocol [16], and its extended version SIC
(ESIC) [17]. The register communication between
threads in both of them can be producer-initiated
and consumer-initiated.

Processor 1 Processor 2 Processor 3 Processor 4

Snoopy Shared Bus

Snoopy Shared Bus

Registers Registers Registers Registers

FU FU FU FU

Bus interface
logic

Bus interface
logic

Bus interface
logic

Bus interface
logic

Directory Directory Directory Directory

I-cache D-cache

Controller and
Speculation support

I-cache D-cache

Controller and
Speculation support

I-cache D-cache

Controller and
Speculation support

I-cache D-cache

Controller and
Speculation support

Unified L2 cache

L1 level

L2 level

Fig. 1. CMP architecture

A loop-live register value in the SIC protocol
can be found in one of the following states:
Invalid (INV), Valid-Unsafe (VU), Valid-Safe (VS),
and Last Copy (LC). Other registers can be either
in Invalid (INV) or Valid-Safe (VS) states. A read
miss for a loop-live register causes a consumer-
initiated inter-thread communication. All possible
suppliers, i.e., predecessors (non-speculative
thread or/and earlier speculative threads)
participate in distributed bus arbitration which
chooses the latest predecessor. If there is no
supplier available at the moment, the consumer
thread blocks. FW request to a loop-live register
incurs the producer-initiated communication by
sending the value to the immediate successor
thread. If the successor was blocked waiting for
this particular value, it continues the execution.

In handling of read misses to a non-looplive
registers Read Snarfing is employed in order to
decrease a number of misses and to validate the
other registers more quickly. Last copy problem
is managed by means of a separate state.

However, the SIC baseline scheme does not
resolve the problem of consumer thread blocking
when requested register value has not been
produced yet. Another proposal, the enhanced

SIC protocol (ESIC), aims to obtain further
performance gain preventing a consumer thread
blocking in SIC scheme by aggressively and
speculatively forwarding of possibly final register
values. Although the ESIC protocol introduces
two additional states, Valid-Possibly-Safe (VPS)
and Valid-Possibly-Safe-Forwarded (VPSF),
hardware and software support for this proposal
are very slightly more demanding.

5. Memory-level protocols
The memory communication, buffering of

speculative data and data dependence detection
in this architecture is performed through L1 write-
back data caches with added support for
speculative execution. Compared to register
dependences it is very difficult to identify memory
dependences from the binaries. Therefore, we
decided to include a hardware support that is
fully responsible for identification and managing
of memory dependencies as well as for
recovering the execution. The proposal for
speculative execution respects the strict
sequential semantics both in thread retiring, and
a new thread initiation.

This proposal for cache coherence protocol

 16

with TLS support relies on snoopy cache
coherence principles [15]. The baseline scheme
modifies the snooping bus-based cache
coherence protocol to support speculative
versioning for proposed CMP architecture.

The proposed integrated coherence and
speculation protocol is called Speculation
Integrated with Snoopy Coherence (SISC)
protocol. The memory state is managed on a per-
word basis since previous work has shown that
memory state management on a per-line basis
could result in false dependence detection that
causes the unnecessary threads squash and
worse performance [2, 13, 15].

Three variants of speculative cache coherence
protocol are proposed: first, a write-invalidate
SISC protocol as the baseline scheme, second,
an enhanced SISC variant, and, third, a write-
update based SISC protocol.

The baseline scheme of SISC write-invalidate
protocol uses 11 states to keep track of data
status. It enables consumer-initiated inter-thread
communication only. The correct value is
supplied by most recent speculative thread, non-
speculative thread or shared L2 cache.

The committed versions in baseline SISC
protocol can remain in the caches after the
thread that created the data has been committed.
This way, the possible bursty bus traffic that may
increase the time to commit the thread and delay
initialization of a new thread to that processor is
avoided. A modified committed cache word is
written back to L2 cache when it is accessed next
time either on local thread read/write request or
on remote request(s) from other thread(s). The
cache words found in stale, shared or modified
committed state remains in the same state when
a speculative thread reaches non-speculative
status. Then, the thread can be retired and a new
thread initiated on the same core.

Following the analogy with register-level
protocols, since the baseline SISC protocol does
not support producer initiated communication on
memory level, it is extended with new state
Shared-Unsafe (SU) in order to support non-
demand inter-thread communication on write hits
and misses. If a cache word is either in shared or
stale state on a non-speculative write, or in any
shared or speculatively modified state on a
speculative write, it is forwarded to successor
threads on non-demand basis.

Third version of the cache coherence protocol
with TLS support in proposed CMP architecture
is based on write-update protocol. It uses 9
states and an additional stale bit for each cache
word in L1 cache. The inter-thread memory
communication in this version can be both
producer-initiated and consumer-initiated. In
SISC write-update protocol whenever a shared
cache word is written to the corresponding L1
cache, its value is updated in the L1 caches of all
successor threads that also have a given cache

word in shared state.
In all three variants of SISC protocol, an

improved replacement policy is employed. It
considers the cache word memory state as
primary criterion for eviction instead of usual
temporal history of reference. The first
candidates for replacement are the words in non-
speculative states, because the replacement of a
speculative word would causes a speculative
thread squash and restart. It allows a speculative
thread to evict from its L1 cache the modified
committed cache words that are only up-to-date
copies and that have been speculatively read or
written. Also, clean words that have not been yet
speculatively either read or write can be
replaced. Hence, the processor stall will be
avoided and the speculative execution will
continue. However, among the clean cache
words that are in the same state standard FIFO,
LRU or random policy can be considered as the
secondary criterion.

8. CONCLUSION

Current CMPs with TLS support have been
analyzed for possible improvements. It resulted
in identification of overheads in four areas:
hardware complexity, software support, bursty
traffic on thread commit and replacement policy.
Based on the results of the previous analysis, a
proposal of CMP architecture with protocols for
register-level and memory-level communication
is made which tries to reduce those overheads.

This proposal decreases the directory
overhead by using fewer bits both in register and
memory protocols. Also, SISC protocols use the
distributed arbitration for finding the appropriate
supplier thread with modest hardware support.
The software support doesn’t include speculation
handlers nor requires source recompilation. SISC
protocols retain the non-speculative data in L1
caches on thread commits over time until their
replacement in order to minimize the delay in
issuing new threads. They also implement an
improved replacement policy that reduces thread
squashing and stalling. Future evaluation study
should reveal the quantitative performance
effects of proposed optimizations.

REFERENCES

[1] Sohi, G.S., Breach, S., Vijaykumar, T.N., “Multiscalar
Processors”, Proc. of 22nd ISCA, May 1992, pp. 414-425.

[2] Gopal, S., Vijaykumar, T., Smith, J. E., Sohi, G. S.,
"Speculative Versioning Cache", Proc. of the 4th HPCA,
February 1998.

[3] Ooi, C.L., Kim, S.W., Park, L., Eigenmann, R., Falsafi,
B., Vijaykumar, T.N., “Multiplex: Unifying Conventional
and Speculative Thread-Level Parallelism on a Chip-
Multiprocessor”, ICS-15, June 2001.

[4] Rotenberg, E., et al, “Trace Processors”, Micro-30,
December 1997, pp. 68-74,.

[5] P.Marcuello, A. Gonzalez, “Control and data
dependence speculation in multithreaded processors”,
Proc. of the 4th HPCA, February 1998.

 17

[6] Tremblay, M., “MAJC™: An Architecture for the New
Millennium”, Proc. Hot Chips 11, Aug. 1999, pp. 275-
288.

[7] Matsushita, S., et al., “Merlot: A Single-Chip Tightly
Coupled Four-Way Multi-Thread Processor”, Proc. Cool
Chips III Symp., Apr. 2000, pp. 63-74.

[8] Keckler, S., et al., “Exploiting Fine-Grain Thread Level
Parallelism on the MIT ALU Processor”, Proc. of 25th
ISCA, ACM press, Jun.-Jul. 1998, pp. 306 -317.

[9] Hammond, L., et al., “The Stanford Hydra CMP”, IEEE
Micro, 2000, pp. 71-84.

[10] Steffan, J.G., Colohan, C.B., Zhai, A., Mowry, T.C., “A
Scalable Approach to Thread-Level Speculation”, ISCA
2000, June 2000.

[11] Tsai, J.Y., Huang, J., Amlo, C., Lilja, D. J., Yew, P-C.,
“The Superthreaded Processor Architecture”, IEEE
Trans. on Computers, September 1999. pp. 881-902

[12] Krishnan, V., Torrellas, J., “A Chip-Multiprocessor
Architecture with Speculative Multithreading.” IEEE
Trans. on Computers, September 1999, pp. 866-880.

[13] Codrescu, L., Scott Wills, D., “Architecture of the Atlas
Chip-Multiprocessor: Dynamically Parallelizing Irregular
Applications”, 1999 IEEE International Conference on
Computer Design, October 1999.

[14] Yanagawa, Y., et al., “Complexity Analysis of a Cache
Controller for Speculative Multithreading Chip
Multiprocessors”, HiPC - International Conference on
High Performance Computing, December 2003.

[15] Tomašević, M., Milutinović, V., The Cache Coherence
Problem in Shared Memory Multiprocessors: Hardware
Solutions, IEEE Computer Society Press, 1993.

[16] Radulović, M., Tomašević, M., “A Proposal for Register-
level Communication in a Speculative Chip
Multiprocessor“, XLIX ETRAN Conference, June 2005.

[17] Radulović, M., Tomašević, M., “An Aggressive Register-
level Communication in a Speculative Chip
Multiprocessor”, IEEE EUROCON2005 Conference,
November 2005.

